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It is shown that in the small-signal, low-gain regime, an analytic expression for the gain canD
derived which is valid for a general electron distribution function and general longitudinali

) variation of the transverse magnetic field pump. This expression is used to evaluate the effects on
the gain curve due to transverse momentum spread in the beam as well as inaccuracies

q (incoherence) in the magnetic pump phase and amplitude. The restricting criteria for the neglectof these effects are derived.
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t lissnea ntesmall-signal lwgain regimes of theyti feee- w e xre ssrtrion o the eern eamitiuin"

tron laser have been analyzed extensively by various tech- (p,z,t )isdue to theoptical fieldsEl~r,t ),Digr,t ),andf'°(p,z)istheSniques -' The present paper relies on the formulation of electron beam momentum distribution function in the pump

Ref. 4, expanding the analysis to the case of a transverse field Do z).
magnetic wiggler (pump) with arbitrary axial variation and The magnetic pump field B(Z) can be described from
an arbitrary three-dimensional velocity distribution fuac- the vector potential A foz):
tion of the electron beam. In the low-gain regime

P/PA(0) < < (which is ofinterest mainlyfortheappication Boz) -- 4V1.Aoz), (2)
of oscillators) the formulation results in an explicit general-
ized gain expressio anwhicheca be used to find the effect of to~z) =A4 (t zp+ A o(Z)e , (3)

random perturbations in an ideally periodic helical wiggler
field, as well as the effect of the beam transverse velocity and following Ret. 4 we find by solving the electron force
spread, on ta th he free-electron laser, equations the three constants of motion of the electrons in

The basic structure of the free-electron laser assumed in the static field A0(z):
most anyses -r ° is that of an amplifier device compoed of a = -A,. (ee) Ao (z), (4)

transversety uniform perodoic (helical) transverse magnetic

("pump" or wiggler) field and an electron beam which prop-
agates along the magnet axis (z axis). The laser ampifies a P (p,,z) = p, - (e/c) A0 , (z), (5)

TEM optical wave which is propagated along the z axis.
The analysis in Ref. 4 is based on the solution of the u(pX, - (p 4 +, +8p)" 2 , (6)

inearlized Vlasov equation where e = jej , a and , are the z and y components of the

+ 8v) ! ( z) canonijalmomentum, and u isthe total mechanical mm-
z C turn of the electron. These variables are independet of z.

"X-B~z t). cpo' (1) Substituting the momentum variables Lp,,p,,,) in term of: I Dzrt,) + the new variables (aP,u) simplifies Eq. (1) into4

,,H 1) 2oz)d

'1-' 8 2 E(rt) + 1-,(a,uz) X )).(t)) gx + ei ~ (7)

The transformation of Eqs. (4H7) corresponds to the
?gka.,u) =:.'(,z), exact solution of the linearized Vlasov equation in terms of

SJt the pump magnetic field. This formulation allows one to
solve the electron equation to At order (small sipal) in the

- . v(aPuA,) - OaP,ul/[mor(u)]. electromagnetic wave [E4r,:), B(rt)]. It is however, exact to
all orders in the pump field 13o. The distribution function
sl(a8,u) is the distribution in terms of the transverse ca-

"'h a mppord in p"n by the Air Force OMe of Scientioc nonical momentum a/i and the total momentum u of the

wder Grant APOSR-76-2933. electrons in the pump field. If the pump is turned on adiaba-
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ficilly it is also equal to the initial momentum distribution of particular field dependence (8) or electron momentum distri-
the electron beam before entering the interaction region. bution function (9). Since the resulting linear gain expression

The analysis in Ref. 4 proceeds with the solution of Eq. would be "exact" in terms of the pump field and electron
(7) together with the Maxwell equations (including Poisson's distribution function, we examine as a special case the effects
equation) for the electromagnetic field and the space-charge of deviations of the fields and the distribution function from
field generated in the beam. In order to derive the free-elec- the ideal forms given by Eqs. (8) and (9).
tron-laser dispersion equation and explicit gain expressions The detailed analysis in' indicated that the contribution
in the different gain regimes, a specific z dependence of the of the first two terms in the second set of large parentheses in
pump field (3) was assumed (helical field): Eq. (7) is negligible in comparison to the contribution of the

Ao(z) = Ao coskoz i + Ao sinkoz i,. (8) third term. Hence for the sake of simplicity we will neglect

The tranverse momentum spread of the electron beam was them from now on (this approximation is implicitly used in

neglected, and the equilibrium distribution function was tak- all the other analyses. t-o

en to be We assume that the electromagnetic fields are trans-
versely uniform across the electron beam (plane wave). The

g°m(a.,u) = nob(aj go~u), (9) electromagnetic fields are expressed in terms of right-hand
where n. is the average electron beam density. and left-hand circularly polarized transverse vector poten-

With these assumptions the analysis of Ref. 4 produced tial components AX(z) and A.(z):
with no further approximations the dispersion equation of
the free-electron laser with a helical magnetic field pump. E(zt) = -
The dispersion equation was then solved and expressions for C dt
the laser gain were derived by using analytic approximations -- -I-A+(z) + + Az)_ e - "' + c.c., (10)
in different regimes. Gain regimes which were identified in- c

clude the thermal-beam regime (considering the effect of mo- B(z,t) = V X A
mentum spread in the total momentum---u only) the high- (d d )e
gain, cold-beam, weak-pump regime (collective regime), the -+(z)i+ + _:--A _ -_ + C.C., ( 1)
high-gain, cold-beam, strong-pump regime, and the low- z

gain, tenuous-cold-beam regime. where
In the present paper we focus our attention on the low- i+ = J(i + ii,) and i_ = J(x - f ,) are respectively the

gain regime AP IP (0) < <I for both cold and thermal beams, rght- and left-hand circular polarization unit vectors, and
excluding collective effects. We find in this case that an ex- A =A1 - iA, A = A, + A Y.
plicit gain expression can be derived without resorting to the With all these assumptions, Eq. (7) now simplifies into

&e'48^ +v a ,8u ) 01 (12
"(a.,u,?+4auz) -. 4 + aj_,u z) _[pa- -Ouz)1(z) +p ,u,z)Az)J a6u),

01i 2c Uu

where V) e -_f.1 "u da dO vdu 8,

andp p. XT"(a.8,uz), (14)
The perturbation in the distribution function gives rise ± p /u)m 15)

to a transverse current

J(zt) = [.jlzk, + ,(z) ,le' + c.c. P± =P :0, -- 6 - A :FA,), (16)
c

= ,,+(z)i+ + .7_(z)O_ le"' + c.c., p.3 p= [U2_-(a + Ao)2--(+ !Ao)2 ] /2 1

(13)~) C> c " (17)where The exact solution of Eq. (12) is

8 .(. OAuAz = exp~i d ep-i" .. la8uz).

(f, uzK \f,(a.OuF) (18)
where M(a,u^z) stands for the right-hand side of Eq. (12)
and we assumeg")(aA,u,0) = 0 (with no prebunching of the
electron beam). Substitution of (1 8) in 114) gives

I ex( -if v . tirF ) P(~~um)P

+ p+(a.,,r') A(z )j-g6 '(a,u). (19)
aud

600 J. Ai. Phys., Vol. 52, No. 2, FebrLay 1961 A. Gover ad P. iprange 600

" " t-,... . . ,...... - .-- , ,40



We now turn to Maxwell's equations to obtain the elec- A (z) A JOe"/ + 2r eA'

tromagnetic field which is induced by the current (19). The =+

equation for the electromagnetic wave-vector potential is
2 f e - 4 (z')dz'. (22)

, + " '-) (z)- - 4 (). (20) Equations (19) and (22) area set of twocoupled-integral
¢ equations which can be used to solve for the linear evolution

This second-order equation can be reduced to a first- of the electromagnetic field. These equations can be solved
order equation if we assume that there is only a forward- by an iterative process. To zero order (no interaction) we
going wave propagating with a wave number -w/c, and havelA (z) =1, (0)e/c. We substitute the zeroth-order
that there is no coupling to a backward-going electromag- interation in (19) which is in turn substituted into (22) to yield
netic wave. We can then reduce (20) to the expression for the electromagnetic field to first order in

A, (0). The iterative process may be continued in this way to
G - (z), (21) higher orders.

(z = At present we are interested only in the linear response
(small-signal) limit and therefore calculate A± (z) to first

which can be readily transformed into an integral equation order:

A:,(Z)= (0() +-f _f da d6du dz' dz'-'-9-LO) (ab8,u) expij --c J o t tJo kv"

X exp[ - if -

The primed and double-primed parameters p., p ± are all We assume that in (23) the expression in large bold par-
dependent on a,,, u, and z' or z', respectively; entheses varies very slowly with z in comparison to
v; = v.(ab,u-'), v" = v,(a,,uF). The Poynting vector exp(iaz/c), hence instead of(24) we can write
power density of the fields in Eqs. (10) and (11) is found to be S = j. I (W2/c) [ I+ (z) 2 + A_ (z) I

2 ]. 125)
given by Let us now assume that the incident electromagnetic
S = i. 1(z) ±A*(z)+1_(z) ±A _(z) + C.C. wave is right-hand circularly polarized [A_(O)= 01. The

8 C dz dz power gain of this wave A + () after an interaction distance I
(24) is

I

This is a general expression for the linear gain in the transverse velocity spread, and zero transverse canonical
low-gain limit which within the limits of the assumptions momentum (9).
used during the derivation is applicable for arbitrary three- In this case we get from (16) and (17)
dimensional beam velocity distribution and arbitrary tram- p+=-(/)o ' , (27)

1* ~~verse field pump, which can be written in the form (3). = (/)e~dz
We may now apply Eq. (26) to the case of the Stanfordfree-eletron laser experiment, where we assume a pure - e,

right-hand helical magnetic field (8). and we see thatp, and v, are no longer functions of a. Equa-
We also assume that the electron beam has negligible tion (26) simplifies into

-9(, -aOu .!L4P~~(l)d d,6~A~
2  du d Y 7)"1--

P+(O) 2 c)p du \v, C

.X ex) 4d CC-(6

(- ) 2  du dgo,4u) sin2I~(alv, - o0/C - (29)

4 Z Jo Vp " d C (~oI/ I )C-lo-gi lii whc wihi the liit o-'-f th ssmtin9omnum()

In the cold-beam limit nawhere v is the beam velocity spreadinthedirection and

v ,e/soe < <PA /1, (30fi ed V/c, we may substitute wiu) = (u -te fato (29).
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Equation (29) then reduces to the conventional gain expres- instead of (8). The amplitude Ao(z) is randomly modulated
sion in the low-gain, tenuous-cold-beam regime'-'0 : around an average value <Ao(z) > = A0. The term 0 (z is ar p'(l) 1 ±1 (0I), 2 (Pw01 )2 W3 ado-hsedvito of the vector potential field A(z). It. .. w_.i  should be pointed out here that 0 (z) and Ao~z) are not related [

P+(0) 8 ?'o?2 " . C in a simple way to the phase and amplitude modulation of

the magnetic field Bo(z). They can be evaluated only after
(sin(o2, (31 ) integrating Eq. (2).

where With Eq. (36) and without assuming (9) we have from
(16)

Oo =-(w/vo - w/c - ko)l, (32)
P10 (e/C)Ao = (e/c)Bodko, (33) ad' al-~(7=nd by expanding (17) to first order in BA4z), a, and,8 we

0- P1o) 2  (34) obtain
Y * 1_ U2 2) 12(35) D _ = L I+~

The gain curve (3 1) obtains its maximum value at p.(z .u 2 { p ° )

8=- 1.3.
It is worth noting that the simplified form of Eq. (29) is + a cos[koz + 0 (z)) + 6 sin[koz + 0 (z)] 1), (38)

due to the fact that in the limit of an ideal helical pump field
and a = # = 0, the longitudinal momentumpz [Eq. (28)] is a 1_. +-p fa z
motion constant and is independent ofz. If, for instance, the v.(z) v (u) p2

pump field was not helical but linearly polar-
ized[ Ao(z) = Ao coskoozi ] instead of(8)], then p, and v. in
Eq. (26) would be still dependent on z in a periodic way [see + a cos[koz + O (z)] +flsin[koz + O (z)]}),
Eq. (17)]. The integration over z' z' is then not immediate. (39)
We will not elaborate on this case beyond noting that the where
gain spectrum for this pump will be rich with harmonics. 6jl (z)=(e/c)6A(z), (40)

We now will examine the effect on the gain of transverse

momentum spread of the electron beam and of irregularities A0(z)-=_Ao + 6Ao(z). (41)
in the helical magnetic pump field. Of course, if the magnetic It is a very good approximation to set a = 6 = 0in Eq.
pump field Bo(z) is known exactly (e.g., measured directly in (37) and substitute in (26)
a specific experiment), then it is possible to find A0 z) by inte-
grating Eq. (2). If the beam velocity distribution go(a.8,u) is P± - (e/c) Ao(z)e t + + (42)
also known explicitly, then the gain can be calculated "ex- This is true for two reasons: (i) The transverse momentum
actly" using the general gain expression (26). In practice we spread a, is assumed to satisfy a,, < <Po and therefore the
are interested in estimating the effects on the gain due to a additive contribution of a :F i6 to (37) and in turn to (26) is
transverse momentum spread and irregularities in the heli- neglibible; (ii) a andfldo not have periodic z dependence like
cal pump field even if we do not know exactly the beam A ± (z); therefore they will not contribute a synchronous
velocity distribution and the exact form for the pump field, term in the integrand of (26) and thus will have a negligible
We will therefore find the conditions in which the effects on contribution. On the other hand we cannot set a = 6 = 0
the gain of transverse momentum spread and of irregulari- in (39) without careful examination, because v, (z) appears in
ties in the pump field are significant enough so that (8) and (9) the exponents of Eq. (26), and small deviations in v, (z) may
and consequently (29) and (31) are not valid, have a significant effect on the integral and spoil the syn-

Irregularities in the helical field can be described as am- chronism condition which led to the "resonant" expression
plitude and phase modulation of the ideal helical field, so in Eq. (29) or (31). As forp, (z) [Eq. (38)], we can (to zero
that order) approximate it by p. (z) = p, (u) when used in (26).

•Ao(z) = Ao(z) cosl kor + 0 (z) IAgain the reason is that the contribution of the first-order
correction is additive and small.

+ Ao(z) sin [kor + 0 (z)]I , (36) We then get from (26)

-P )]1 ! 0 2J7f " fd~Pu~'f'i u aPu

Cos I) 0, o - z-) + Oz') - O(z-)], (43)

where 

iA 

-, 
]

z{ 0) ! {pSo(z)+acos[k +#(z-)] +Psin[ko+o(-)])dJ-*(z). (44)
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Using these expressions, we will first examine the effect 0 (z) = 0 and a Maxwellian transvene momentum sprad of
of transverse velocity spread on the gain. For the sake of the electron beam;
simplicity we assume now an ideal helical field Az(z) = AO,

p2 p2  ) -*V / (45)Ap?)fof =o W, dp-
4P+(l)= _ 0~ m (e_2 -' d r [ - c Pio a, sinikoy cos( +-oV• (46)P+(O) 2 c pcJ ;o 0 T''jo P P, c

Further investigation of the integral in (46) will not be It is interesting to compare conditions (47) and (41) with
carried out at this time. We only note that besides reducing condition (30) for the longitudinal momentum spread, which
the gain, the transverse momentum also generates harmonic can be written in the forms
frequencies in the gain spectrum. We may also find from (46) Pa,/P.o < <0, A A/, (49)
that the condition at which the neglect of the transverse mo-
mentum spread is allowed is or in the relativistic limit

w Plo a,,, f,,,/ro < <r7, A/. (50)<<1.
vcoko p.0 p.o In the regime

Using the synchronism condition wlcilvzo - k, this A (I + )6.o ,oe0. (A 2,6,0e. < 9,
can be written as the second being the relativistic expression, we find that the

a,/P.O < < 1/[(I + fl1.0)1.0# 1, (47) condition on the transverse momentum spread (47) is more
where stringent than the condition on the longitudinal spread.

010 PPo p = eBo1(yomVmcko). With high-energy beams this may easily be the case and con-
ditions (47) and (48) may be of practical concern. It is easy toverify, that condition (48) and (50) are reasonably well satis-

W, /9'o < < 1/(2eopo). (48) fled for the parameters of the Stanford experiment.'
We now consider the effect of irregularities in the heli-

When (47) or (48) is well satisfied we may set in (46) ath = 0 cal pump field, and this time we assume for simplicity
and recover (29). 1 ath = 0 [Eq. (9)]. Equation (43) then simplifies into

AP+I() =p 2 M du dzr' dz" dgou)PlZ)po(z) cos - .! ko) (z' - z',- , (51)
P+(0) C 0f. fddu.'Y)p.zo lsKN.-l

where 6A(z) _ 2 6Bel) ., (56)
Ow --(52) Ac, B, I'

- C p2  (and the resultant phase shift 0 (1) is negligible. Applying in-
Notice that the phase deviation Ofz) is affected not only by equality (53) at z = I gives
the phase deviation of the helical field vector potential q$ (z)
but also by the amplitude deviation BAo(z). IBo(l) o (57)

The condition that Eq. (51) be reduced to (29) and the IB 2 <l 21.
effect of imperfections in the helical field be neglected is

*For A = 10 om,1 4 m,6c, = 0.05, and Pzo = I this re-
< <r (53) quires that 1Bl)/BI < <5 X 10-', which is a quite strin-

for any 0 < z < L. In this condition it is possible to expand the gent condition.
integrand in (51) to first order in Oz) and the first-order term We can now appreciate the significance of inaccuracies
will be small compared to the zeroth-order term (29). Condi- in the periodicity and amplitude of the helical field. Small

* tion (53) may be quite a stringent condition when the interac- local deviations in the field period will not cause major
tion length is long. For example, to appreciate the effect of change in the gain expression (29) as long as there is no cu-
changes in the magnetic field amplitude assume that the mulative phase deviation throughout the interaction length I
magnetic field amplitude changes in a linear way along the which violates (53). In other words, the long-range coher-
axis while the helical phase stays constant: ence of the periodic structure is important. We may add that

) -s( similar conditions would apply also to the problem of stimu-
o(z)f - [Bo + B,(z)][oskor. +,sinkc,]1, (54) lated Compton and Raman scattering ofaneetromnagnetic

8Bo(z ) = 6Bo1() z (55) wavefromelectronbeams'1-|3wherethecoherentlengthof
Bo Bo I the scattering wave may limit the obtainable gain. This may

Integrating (2) using (54) and (55), and comparing to (36) and be an important consideration especially when the scattering
(40), we find that (pump) wave is produced by a low-coherence source like a
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Erratum: "A Generalized Formulation of free electron lasers in the

low-gain regime including transverse velocity spread and wiggler incoherence",

A. Gover and P. Sprangle, J. Appl. Phys. 52, 599 (1981)

The following are corrections to mistakes and omissions in the above

paper.

(1) Eq. (17): A o-Aoz ox

(2) Eq. (36): add '9 after the first termx

(3) Eq. (45) should read:

()n r_ 2 2  2 ]goU
g() (CL,,u) = 0 exp[(CL2+p)/Ct

Sth

(4) Eq. (46):

!!--dz' dz
z 0 z 0

(5) Inequality (48) should read:

th -th/zo / < < 1/(2

(6) Inequality two lines after Eq. (50) should read:

ath/Ezth 'th/Ezth <

Substituting in (48) y o = Y - 040), find out that a sufficient

condition for satisfying (50) is

-'th =th << 1/YO'
Pzo



In most accelerators this condition is not difficult to satisfy. Further-

more, we should point out that this condition is primarily a condition for

reduced higher harmonic operation. A Fourier series expansion of the ex-

ponential function in (46) reveals indeed that when the inequality is not

satisfied, the high harmonics gain becomes large. The gain of the funda-

mental harmonic falls down then, but at a moderate rate.

If one keeps in (38) the second order expansion of (17) in terms of

a and P, then in (44) an additional term is added at the right hand side:

122 z.When inequality (53) is used for this term with z=R, we
TV-u) 2
z p (u)Pz(

get a second limitation on the beam angular spread

2
2 h < o

=th 2 zo
Pzo

Comparing the two conditions on the beam angular spread, we find out

that the latter (second order) condition is more stringent than the first
i~ 2
order condition if k k > 4ory /Y . Since this is usually the case, we con-

clude that the second order condition on the angular spread is the dominant
one, and negligible second harmonic gain is usually automatically guaranteed

in helical wiggler FELs which satisfy this condition and operate in the low

linear gain regime.
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